Problem Statement — B1

CPU Emulation

Computer programs are essentially a set of instructions that your CPU runs. Each instruction will
manipulate the state of the machine; for example, one instruction might add two numbers
together. The time to run an instruction can be measured in “cycles”. The more cycles a CPU can
run, the more instructions it can execute.

Instruction ID # of Cycles Effect on Stored Integer
0 1 X=x+1
1 2 X=X*2
2 3 X=x%*5

Table 1. Instruction Set for the Wildcat 64

Listed above in Table 1is the instruction set for the Wildcat 64’s CPU. lts CPU stores an integer in
memory that is initialized to O, and each instruction modifies the stored integer. Whenever an
instruction is run, it has to use the specified number of cycles in Table 1to run.

Your task is to emulate the Wildcat 64 machine by replicating the behavior described above. Your
program should take 3 instruction ids to execute consecutively in the order given. Your program
should then output the stored integer after running the instruction(s). Finally, your program should
also output how many cycles were used after running the instructions. When taking in the
instruction ids, you may assume that the instruction id will always be O, 1, or 2.

Example 1

Example 2

Input: Instruction 1: O

Input: Instruction 2: 1

Input: Instruction 3: 2

Output: The stored integer is 10
Output: The number of cycles is 6

Input: Instruction 1: 2

Input: Instruction 2: O

Input: Instruction 3: 2

Output: The stored integeris 5
Output: The number of cycles is 7

2 - Beginner - Gremlin Lifts

Problem Statement

Gremlin Lifts, a division of CBG Inc (Cheap But Glitchy Incorporated), has installed an elevator in a
seven-story building. Due to their upbringing, Gremlin Lifts has numbered the floors 0 - 6 and
refuse to re-number them, claiming that the request is “out of scope”. Gremlin Lifts, having been
built by actual gremlins, don't necessarily work the way one might hope.

The Gremlin Lift elevator has the same four 4 buttons in the elevator and on each floor: Up, Down,
eXpress and Off. Using a proprietary technology, the elevator only responds to a button if it is
already at a floor. Buttons pressed while the elevator is in motion are ignored.

Their transition from floor to floor is governed by the following diagram ... please note that Off is
really the ground floor with the elevator turned off.

Fugre 1: Elevator Operational Diagram

Requirements

Buttons

e Pushing any button in the Off state has no effect—there is no on button. At installation the
elevator was in the “0” state.

e The up button always causes the elevator to go up 2 floors, if it cannot go up 2 floors it does
nothing.

e Pushing the down button causes the elevator to go down the half the number of floors it is
on (rounded up). For example, if the elevator is on floor 5 and down is pressed, the elevator
goes to floor 2 (5/2 rounded up is 3, so the elevator goes down 3 floors and ends stops on
floor 2)

e The express button causes the elevator to go to the ground (0) floor, except a system glitch
means the button does not work when on floor “4".

e The off button only works if on the ground (0) floor. Any button pressed while the elevator is
off will not work.

Input

e A string that contains any number of the following characters representing each button
press: "D" for Down, "U" for Up, "X" for eXpress, and "O" for Off

af://n7
af://n8
af://n20
af://n24

Output

The program should output the final floor that the elevator is at once all button presses have been

processed as well as the number of invalid button presses (button presses that caused nothing to
happen) that were made.

Example
Input Output
Stopped on floor 3
UUDUXUDO .
Invalid button presses: 2
Stopped on floor 4
UUuUDUDUX)
Invalid button presses: 1
Stopped on floor 0
OoubuU

Invalid button presses: 3

af://n24
af://n26

b2-gremlin-lifts-solution.py

1of1

2023\gremlin_lifts\b2-gremlin-lifts-solution.py

W 0O NV A~ WN PR

NNMNNNMNMNNNNRRPRRRRRRRRR
0ONOU DA WNROOUOWOUNOODUDNWNRO®

Author: Josh Weese

Gremlin Lifts Beginner Model Solution

import math

on = True
floor = 0
i=20

invalid_count = ©

buttons = input("Enter the button presses:

while on and i < len(buttons):
button = buttons[i].upper()

i+=1

if button == 'U' and floor < 5:
floor += 2

elif button == 'D' and floor != 0:
floor -= math.ceil(floor/2)

elif button == 'X' and floor != 4:
floor = ©

elif button == '0' and floor == 0:
floor = ©
on = False

else:

invalid_count += 1

")

print(f"At floor {floor} after {button}")

print(f'Stopped on floor {floor}")

http://localhost:59096/f0808583-d557-4ee6-917d-181e6da657c2/

print(f'Invalid button presses: {invalid_count + len(buttons) - i}")

10/27/2023, 9:48 AM

3 Beginning — Divisibility
Problem Statement

A positive integer k is a proper factor of an integer n if:

e k #n and

e k divides n; i.e., there is an integer ¢ such that ik = n.

A positive integer n is:

e deficient if the sum of its proper factors is less than n;
e perfect if the sum of its proper factors is equal to n;

e abundant if the sum of its proper factors is greater than n.

Examples:

e 4 is deficient because 1 + 2 < 4.
e 6 is perfect because 1 + 2 + 3 = 6.

e 12 is abundant because 1 +2+3+4+6 > 12.

Write a program that takes as input a positive integer n and outputs whether
n is deficient, perfect, or abundant. Note that there are at least two ways to
determine whether k divides n using integer variables:

e See if (n/k) xk =n (if k doesn’t divide n, the integer division will round
down to the next integer).
e Alternatively, see if the remainder when dividing n by k is 0.

Example 1:

Enter n: 4
4 is deficient.

Example 2:

Enter n: 6
6 is perfect.

Example 3:

Enter n: 12
12 is abundant.

...inning.Divisibility\Beginning.Divisibility\Program.cs

oo FWNBR,

// 3 Beginning - Divisibility

Console.Write("Enter n: ");

int n = Convert.ToInt32(Console.ReadLine());
int sum = 0;

for (int i = 1; i < n; i++)

{

if (n % i == 0)

{

sum += 1i;

}
}
if (sum < n)
{

Console.WriteLine(n + " is deficient.");
}
else if (sum == n)
{

Console.WriteLine(n + " is perfect.");
}
else
{

Console.WriteLine(n + " is abundant.");
}

4 - Beginner - Efficient Gardening

Problem Statement

Alice is a tech-savvy gardener who is looking to maximize the yield from her rectangular-shaped
garden. She has information on various crops, including the spacing needed between plants and
the expected yield per plant. Alice wants to use this information to decide which crop to plantin
her garden to get the maximum yield.

Write a program that helps Alice determine which crop to plant in order to achieve the maximum
yield. The program should also calculate how many plants can be planted in the garden for the
selected crop and the total expected yield.

Input

e Twointegers L and w (L > 0, W > 0): the length and width of the garden in meters.

e Three crops will always be entered. The following are entered for each crop: a string for the
name of the crop, a float s (0.1 < s <10) for the spacing between plants in meters, and a
float v (0.1 £ v £10) for the expected yield per plant in kilograms.

Output

The program should output the best crop (the crop with the highest yield) along with the number
of plants that can be planted on the field and the total expected yield in kilograms rounded to two
decimal places. If there is a tie, only one needs outputted.

Other Constraints

e Each plantis planted directly in the center of a square space that is Sz.S where S is the
specified spacing of that plant type. You may assume the garden is large enough to plant one
of the crops given.

e The field can accommodate a whole number of plants. If the spacing causes a fractional
number of plants to fit along the length or width, the number of plants should be floored to
the nearest whole number.

Example
Input

1 10 10

2 Corn 1 2.5

3 Wwheat 0.5 1.2

4 Rice 2 3
Output

1 Best crop is Wheat: 400 plants, 480.00 kg

af://n5
af://n18
af://n20
af://n28
af://n29
af://n31

b4-efficient-gardening-solution.py

1of2

2023\crop_calculator\b4-efficient-gardening-solution.py

1
2

O 00 NO UVl b w

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

def calculate_yield(L, W, spacing, yield_per_plant):

"""Calculate the yield of a crop given the dimensions of the garden and the spacing
between plants

param L: length of the garden

param W: width of the garden

param spacing: spacing between plants

param yield per_plant: yield of the crop per plant
return: the number of plants and the total yield
plants_along length = int(L / spacing)
plants_along width = int(W / spacing)

total_plants = plants_along_length * plants_along width
total_yield = total_plants * yield per_plant

return total plants, total yield

def read_input():
"""Read the input and return the data.

Returns:
tuple: The length and width of the garden, number of crops, and a list of crops.

The list of crops is a dictionary containing the name, spacing, and yield per
plant.

Number of crops is fixed for this problem.
L, W = map(int, input('Enter field size: ").split())
N =3

crops = []
for i in range(N):

crop_name, spacing, yield per_plant = input(f"({i+1}) Enter crop_name, spacing,
yield per_plant: ").split()

spacing = float(spacing)
yield per plant = float(yield per_plant)
crops.append((crop_name, spacing, yield per_plant))

return L, W, N, crops

field_length, field_width, number_of crops, crops = read_input()

Keep track of the best yield and its corresponding data
best_yield = 0

best_crop_name =
best_plants = ©

results = []

for i in range(number_of_crops):
crop_name = crops[i][@]
spacing = crops[i][1]
yield per_plant = crops[i][2]

10/27/2023, 10:05 AM

http://localhost:59096/f5d9a0fe-9276-4907-aaf0-13a2fbf8246b/

b4-efficient-gardening-solution.py

2 of 2

51
52

53
54
55
56
57
58
59
60
61
62
63
64

plants, yield_for_crop = calculate_yield(field_length, field_width, spacing,
yield per_plant)

Check if this yield is better than the best so far
if yield for_crop > best_yield:

best_yield = yield for_crop

best_crop_name = crop_name

best_plants = plants

results.append((crop_name, plants, yield for_crop))
Print the results

print(f"Best crop is {best_crop_name}: {best plants} plants, {best yield:.2f} kg")
print(results)

http://localhost:59096/f5d9a0fe-9276-4907-aaf0-13a2fb{8246b/

10/27/2023, 10:05 AM

B5 Minimizing Change in Pocket (CIP)

| don’t like accumulating extra change in my pocket (CIP). Except for quarters, | want as few coins as
possible. Design a calculator that keeps tracks of the CIP and when | have a bill to pay with cash, it
suggests what change to give the clerk to minimize the change left in my pocket. In particular, | like to
get rid of pennies and nickels.

To avoid some issues, we will not deal with dimes or dollar bills.

Assume you have sufficient change to pay off the change on the bill. Also, do not give the clerk more
than 99 cents in change.

Example 1:

Input: Starting CIP: 8 pennies, 5 nickels, 4 quarters
The bill: $10.34

Output: Give 4 pennies, 1 nickel, 1 quarter

Example 2:

Input: Starting CIP: 8 pennies, 2 nickels, 1 quarters
The bill: $0.37

Output: 7 pennies, 1 nickels, 1 quarter

Example 3:

Input:
Starting CIP: 5 pennies, 8 nickels, 4 quarters
The bill: $30.87

Output: 2 pennies, 7 nickel, 2 quarter

// B5 solution
#tinclude <iostream>

int main()

{
char quit = 'Q’;
while (quit == 'Q') {
quit = 'N';
double Bill;
int Pchg, Bchg, Npennies, Nnickels, Nquarters;
int Bpennies, Bnickels, Bquarters, Dollars;
int UseP, UseN, UseQ;
std::cout << "\nEnter the number of pennies in the pocket :";
std::cin >> Npennies;
std::cout << "\nEnter the number of nickles in the pocket :";
std::cin >> Nnickels;
std::cout << "\nEnter the number of quarters :";
std::cin >> Nquarters;
std::cout << "\nEnter the amount of the bill :";
std::cin >> Bill;
Dollars = Bill;
Bchg = (100 * Bill) - (100 * Dollars);
std::cout << "\ncents " << Bchg << "\n dollars " << Dollars;
Pchg = 25 * Nquarters + 5 * Nnickels + Npennies;
std::cout << "\n amount of change: " << Pchg << "\n";
Bpennies = Bchg - (Bchg / 10) * 10;
std::cout << "\npennies" << Bpennies; UseP = 0;
if (Npennies > © && Bpennies > 0) {
if (Bpennies <= Npennies)
{
UseP = Bpennies; Npennies = Npennies - UseP; Bchg = Bchg - UseP;
std::cout << "\nResultl UseP: " << UseP << " Bchg: " << Bchg;
}
else
{
if (Bpennies > 5 && (Bpennies - 5 <= Npennies))
{
UseP = Bpennies - 5; Npennies = Npennies - UseP; Bchg = Bchg -
UseP;
std::cout << "\nResult2 UseP: " << UseP << " Bchg: " << Bchg;
}
}
¥
//nickels
UseN = 0;

Bnickels = Bchg / 5;
if (Bnickels > © && Nnickels > @) {
if (Nnickels »>= Bnickels) {
UseN = Bnickels;

}

else {
if (Nnickels >= Bnickels - 5) { UseN = Bnickels - 5; }
else {
if (Nnickels >= Bnickels - 10) { UseN = Bnickels - 10; }
else { if (Nnickels >= Bnickels - 15) UseN = Bnickels - 15; }
}
}

std::cout << "\nResult3 UseN: " << UseN << " Bchg: " << Bchg;
Nnickels = Nnickels - UseN; Bchg = Bchg - 5 * UseN;
¥
//quarters
Bquarters = Bchg / 25; UseQ = 0;
if (Nquarters >= Bquarters) { UseQ = Bquarters; }
Bchg = Bchg - 25 * UseQ; Nquarters = Nquarters - UseQ;
Fquarters = Nquarters;
std::cout << "\nResult4 UseQ: " << UseQ << " Bchg: " << Bchg;
if (Bchg > @) {
Rchg = 100 - Bchg;
std::cout << "\nResult7 Rchg: " << Rchg;
Rquarters = Rchg / 25; Rchg = Rchg - 25 * Rquarters;

std::cout << "\nResult8 Rquarters: " << Rquarters << " Rchg: "
Rnickels = Rchg / 5; Rchg = Rchg - 5 * Rnickels;
std::cout << "\nResult9 Rnickels: " << Rnickels << " Rchg: "

Rpennies = Rchg;

}

std::cout << "\nquit?"; std::cin >> quit;

<< Rchg;

<< Rchg;

6 Beginning — Hexagon
Problem Statement

In the hexagon shown to the right,
the two horizontal edges have length
1, and each of the other four edges
have length /2, which you should
approximate as 1.414. We wish to
travel clockwise along this hexagon,
starting at point (0,0), and traveling
a given distance. Write a program
that takes as input a positive floating-
point number d less than the perime-
ter of this hexagon, and produces as
output the Cartesian coordinates of
the point reached after traveling this
distance from (0,0).

Example 1:

Enter d: .707
(0.5, 0.5)

Example 2:

Enter d: 2.414

2,1)

(0,0)

(3,0)

(2.0000000000000004, 0.9999999999999997)

Example 3:

Enter d: 7

(0.46393210749646385, -0.46393210749646385)

2,—-1

Note: Your answers may not match the above exactly, but they should agree
to three decimal places; for example, because the y-coordinate for Example 2
rounds to 1.000, the value produced should satisfy 0.9995 < y < 1.0005.

. ..exagon\Beginning.Hexagon\Beginning.Hexagon\Program.cs

oo FWNBR,

// 6 Beginning - Hexagon

Console.Write("Enter d: ");
double d = Convert.ToDouble(Console.ReadLine());
double diag = 1.414;

double x, y;
if (d <= diag)
{
x = d / diag;
y = x;
}
else if (d <= 1 + diag)
{
d -= diag;
x =1+ d;
y =1
}
else if (d <= 1 + 2 * diag)
{

d -= 1 + diag;
x =2 + d / diag;
y =1-d / diag;

}
else if (d <= 1 + 3 * diag)
{
d =1+ 2 * diag;
x =3 -d / diag;
y = -d / diag;
}
else if (d <= 2 + 3 * diag)
{
d -=1+ 3 * diag;
X =2-d;
y = -1
}
else
{
d == 2 + 3 % diag;
x =1 -d / diag;
y =d / diag - 1;
}
Console.WriteLine("(" + x + ", " + vy + ")");

