
 Problem Statement — A1
 CPU Emulation

 Computer programs are essentially a set of instructions that your CPU runs. Each instruction will
 manipulate the state of the machine; for example, one instruction might add two numbers
 together. The time to run an instruction can be measured in “cycles”. The more cycles a CPU can
 run, the more instructions it can execute.

 Instruction ID # of Cycles Effect on Stored Integer

 0 1 x = x + 1

 1 2 x = x ∗ 2

 2 3 x = x ∗ 5

 Table 1. Instruction Set for the Wildcat 64

 Listed above in Table 1 is the instruction set for the Wildcat 64 ’s CPU. Its CPU stores an integer in
 memory that is initialized to 0, and each instruction modifies the stored integer. The CPU is given
 a number of cycles to run, and it will execute instructions until it runs out of cycles. If the CPU tries
 to execute an instruction without sufficient cycles (i.e. executing instruction 2 with 1 cycle left), it
 will not execute the instruction and will terminate early.

 Your task is to emulate the Wildcat 64 machine by replicating the behavior described above. Your
 program should take the number of cycles to be emulated. Your program should then take the
 instruction id to execute until the number of cycles inputted has been exceeded. Finally, your
 program should output the stored integer after running the instruction(s). You may assume that
 the number of emulated instructions is between 1 and 25. You may also assume that the
 instruction id will always be 0, 1, or 2.

 Example 1 Example 2

 Input: Number of emulated cycles: 7
 Input: Instruction: 0
 Input: Instruction: 0
 Input: Instruction: 1
 Input: Instruction: 2
 Output: The stored integer is 20

 Input: Number of emulated cycles: 8
 Input: Instruction: 0
 Input: Instruction: 2
 Input: Instruction: 0
 Input: Instruction: 0
 Input: Instruction: 2
 Output: The stored integer is 7

2 - Advanced - Gremlin Lifts
Problem Statement

Gremlin Lifts, a division of CBG Inc (Cheap But Glitchy Incorporated), has installed an elevator in a
multi-story building. Due to their upbringing, Gremlin Lifts has numbered the floors starting at 0
on the ground level and refuse to re-number them, claiming that the request is “out of scope”.
Gremlin Lifts, having been built by actual gremlins, don’t necessarily work the way one might
hope.

The Gremlin Lift elevator has the same four 4 buttons in the elevator and on each floor: Up, Down,
eXpress and Off. Using a proprietary technology, the elevator only responds to a button if it is
already at a floor. Buttons pressed while the elevator is in motion are ignored.

The transition from floor to floor is governed by the following rules:

Pushing any button in the Off state has no effect—there is no on button. At installation the
elevator was left on at the ground floor

The up button always causes the elevator to go up 3 floors, if it cannot go up 3 floors it does
nothing.

Pushing the down button when on odd numbered floors causes the elevator to go down one
third the number of floors it is on rounded up. If it is on an even numbered floor, the elevator
goes down half the number of floors it is on. For example: pressing down on the 6th floor will
cause the elevator to go down floors () to floor 3. If the elevator was on the 5th floor,
pressing down would cause the elevator to go down floors (rounded up) to floor 3.

The express button causes the elevator to go to the ground (0) floor, except a system glitch
means the button does not work when the elevator is half way (rounded up) to the top floor.

The off button only works if on the ground (0) floor. Any button pressed while the elevator is
off will not work.

Input
A whole number, , that represents the total number of floors the elevator will be
installed on

A string that contains any number of the following characters representing each button
press: "D" for Down, "U" for Up, "X" for eXpress, and "O" for Off

Output
The program should output the final floor that the elevator is at once all button presses have been
processed as well as the number of invalid button presses (button presses that caused nothing to
happen) that were made.

a2-gremlin-lifts-problemStatement

No. 1 / 2

af://n57
af://n63
af://n65

Input Output

7
UUDUXUDO

Stopped on floor 2
Invalid button presses: 1

10
UUUUUUXUDDO

Stopped on floor 1
Invalid button presses: 4

4
OUDU

Stopped on floor 0
Invalid button presses: 3

Example

a2-gremlin-lifts-problemStatement

No. 2 / 2

af://n65

2023\gremlin_lifts\a2-gremlin-lifts-solution.py

1 """

2 Author: Josh Weese

3

4 Gremlin Lifts Advanced Model Solution

5 """

6 import math

7 floor = 0

8 top_floor = int(input("How many floors are in the building? ")) - 1

9 print(f"Top floor is {top_floor}")

10 mid_floor = math.ceil(top_floor/2)

11 print(f'Middle floor is {mid_floor}')

12 i = 0

13 on = True

14 invalid_count = 0

15 buttons = input("Enter the button presses: ")

16 while on and i < len(buttons):

17 button = buttons[i].upper()

18 i += 1

19 if button == 'U' and floor <= top_floor - 3:

20 floor += 3

21 elif button == 'D' and floor != 0:

22 if floor % 2 == 0:

23 floor -= floor//2

24 else:

25 floor -= int(math.ceil(floor/3))

26 elif button == 'X' and floor != mid_floor:

27 floor = 0

28 elif button == 'O' and floor == 0:

29 floor = 0

30 on = False

31 print(f'***Lift is now off***')

32 else:

33 invalid_count += 1

34 print(f'****Invalid button press: {button}***')

35 print(f"At floor {floor} after {button}")

36 print(f'Stopped on floor {floor}')

37 print(f'Invalid button presses: {invalid_count + len(buttons) - i}')

a2-gremlin-lifts-solution.py http://localhost:65353/4bfc23a5-76fb-4319-b982-4d1bedcd8f31/

1 of 1 11/1/2023, 12:33 PM

3 Advanced — Divisibility

Problem Statement

A positive integer k is a proper factor of an integer n if:

• k 6= n and

• k divides n; i.e., there is an integer i such that ik = n.

A positive integer n is semiperfect if some subset of its proper factors sum
to n. For example, 12 is semiperfect because 1 + 2 + 3 + 6 = 12. On the other
hand, 10 is not semiperfect because its proper factors, 1, 2, and 5, sum to 8;
hence, there can be no subset that sums to 10. Likewise, 70 is not semiperfect
because its proper factors, 1, 2, 5, 7, 10, 14, and 35 sum to 74, and because no
subset sums to 4, no subset can sum to 70. Note that the subset can be the
entire set of proper factors; hence, 6 is semiperfect because its proper factors,
1, 2, and 3, sum to 6.

Write a program that takes as input a positive integer n < 10,000 and
outputs whether n is semiperfect. You may find the following fact useful. Let
S = {u0, u1, . . . , uk−1} be a set of positive integers, and let n be an integer.
Then:

• If n < 0, no subset of S sums to n.

• If k = 0 (i.e., if S = ∅), then a subset of S sums to n if and only if n = 0.

• If k > 0 and n ≥ 0, then a subset of S sums to n if and only if a subset of
{u0, u1, . . . , uk−2} sums to either n or n− uk−1.

Example 1:

Enter n: 12

12 is semiperfect.

Example 2:

Enter n: 70

70 is NOT semiperfect.

Example 3:

Enter n: 6

6 is semiperfect.

...dvanced.Divisibility\Advanced.Divisibility\Program.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42

// 3 Advanced - Divisibility

namespace Advanced.Divisibility;

class Program
{

static void Main(string[])
{

Console.Write("Enter n: ");
int n = Convert.ToInt32(Console.ReadLine());
List<int> factors = new();
for (int i = 1; i < n; i++)
{

if (n % i == 0)
{

factors.Add(i);
}

}
if (HasSubset(factors, factors.Count, n))
{

Console.WriteLine(n + " is semiperfect.");
}
else
{

Console.WriteLine(n + " is NOT semiperfect.");
}

}

private static bool HasSubset(List<int> values, int k, int n)
{

if (n < 0)
{

return false;
}
if (k == 0)
{

return n == 0;
}
return HasSubset(values, k - 1, n) || HasSubset(values, k - 1, n -
values[k - 1]);

}
}

4 - Advanced - Efficient Gardening
Problem Statement

Alice is a tech-savvy gardener who is looking to maximize the yield from her rectangular-shaped
garden plot. She has information on various crops, including the spacing needed between plants
and the expected yield per plant.

Write a program that helps Alice determine which combinations of crops to plant in order to
achieve the best yield while covering as much of the garden as possible. For each crop, the
program should calculate and output the number of rows in the garden planted for that crop
along with the number of plants planted and the expected yield.

Constraints
Each plant is planted directly in the center of a square space that is where is the
specified spacing of that plant type.

The garden can accommodate only a whole number of plants. If the spacing causes a
fractional number of plants to fit along the length or width, the number of plants should be
floored to the nearest whole number.

Rows are always planted along the longest length

Two crops cannot be planted in the same row.

You may assume the garden is large enough to plant at least one row of one of the crops
given. However, some crops may not be planted.

Input
Two integers L and W (,) representing the length and width of the garden in

meters.

An integer N () representing the number of available crops.

For each crop n of N

a string representing the name of the crop,

a float S (0.1 ≤ S ≤ 10) representing the spacing between plants in meters, and

a float Y (0.1 ≤ Y ≤ 10) representing the expected yield per plant in kilograms.

Output Format
The program should output each crop along with the number of rows and number of plants that
can be planted on the field with the total expected yield in kilograms rounded to two decimal
places. Crops do not need to be outputted in any particular order.

See next page for example

af://n4
af://n16
af://n31
af://n33

Example

Input

Output

10 23

3

Wheat 1 1.2

Rice 2 5

Potatoes 4 42

1

2

3

4

5

Potatoes: 5 rows, 10 plants, 420.00 kg yield

Rice: 1 rows, 5 plants, 25.00 kg yield

Wheat: 1 rows, 10 plants, 12.00 kg yield

1

2

3

af://n33
af://n34
af://n36

2023\crop_calculator\a4-efficient-gardening-solution.py

1 """
2 Author: Josh Weese
3 Advanced Efficient Gardening Solution
4 Calculate which crops to plant in a garden to maximize yield
5 """
6
7 def calculate_yield(L, W, spacing, yield_per_plant, length_wise=True):
8 """Calculate the yield of a crop given the dimensions of the garden
9 and the spacing between plants

10 param L: length of the garden
11 param W: width of the garden
12 param spacing: spacing between plants
13 param yield_per_plant: yield of the crop per plant
14 param length_wise: whether to plant the crops length wise or width wise
15 return: a dictionary containing the number of rows, the number of plants, and the

total yield
16 """
17 # Calculate the number of plants that can fit in length and width
18 plants_along_length = int(L / spacing)
19 plants_along_width = int(W / spacing)
20 if length_wise:
21 rows = plants_along_length
22 else:
23 rows = plants_along_width
24
25 total_plants = plants_along_length * plants_along_width
26 total_yield = total_plants * yield_per_plant
27
28 return {'rows': rows, 'number_of_plants': total_plants, 'yield_for_crop': total_yield}
29
30
31 def read_input():
32 """Read the input and return the data. This function was used only in testing and
33 is not part of the solution. It can be replaced using user input or a different

method.
34
35 Returns:
36 tuple: The length and width of the garden, number of crops, and a list of crops.
37 The list of crops is a dictionary containing the name, spacing, and yield per

plant.
38 """
39
40 L, W = map(int, input('Enter field size: ').split())
41 N = int(input('Enter number of fields: '))
42
43 crops = []
44 for i in range(N):
45 crop_name, spacing, yield_per_plant = input(f'({i+1}) Enter crop_name, spacing,

yield_per_plant: ').split()
46 spacing = float(spacing)
47 yield_per_plant = float(yield_per_plant)
48 crops.append({'name': crop_name, 'spacing': spacing,
49 'plant_yield': yield_per_plant})

a4-efficient-gardening-solution.py http://localhost:59096/fcfd6dde-f668-492c-b771-d7d4a2eb16a8/

1 of 2 10/27/2023, 9:56 AM

50
51 return L, W, N, crops
52
53 field_length, field_width, number_of_crops, crops = read_input()
54
55 # Sort the crops by yield
56 print('____________sorting by yield_____________')
57 results = {}
58 crops.sort(key=lambda x: x['plant_yield'] / x['spacing'] ** 2, reverse=True)
59 print('____________planting_____________________')
60
61 # keeping track of the area left to plant
62 unplanted_area = field_length * field_width
63 unplanted_length = field_length
64 unplanted_width = field_width
65 # Decide whether to plant length wise or width wise
66 if field_length > field_width:
67 length_wise = True
68 else:
69 length_wise = False
70 for i in range(number_of_crops):
71 # Calculate the yield of the crop
72 planted_result = calculate_yield(unplanted_length,
73 unplanted_width,
74 crops[i]['spacing'],
75 crops[i]['plant_yield'],
76 length_wise)
77
78 # If the area of the crop is less than the area left to plant, plant the crop
79 planted_area = planted_result['number_of_plants'] * crops[i]['spacing'] ** 2
80 if planted_area <= unplanted_area:
81 results[crops[i]['name']] = {
82 'rows': planted_result['rows'],
83 'planted': planted_result['number_of_plants'],
84 'yield': planted_result['yield_for_crop']
85 }
86 unplanted_area -= planted_area
87 # Adjusting the dimensions for the next crop
88 row_space = crops[i]['spacing'] * planted_result['rows']
89 if length_wise:
90 unplanted_length -= row_space
91 else:
92 unplanted_width -= row_space
93 print(f'planted {crops[i]["name"]}')
94 print(f'field size left to plant: length: {unplanted_length}, width:

{unplanted_width}')
95 print(f'area left: {unplanted_area}')
96
97 print('_____________results_____________________')
98 # Print the results
99 for crop in results:

100 print(f"{crop}: {results[crop]['rows']} rows, {results[crop]['planted']} plants,
{results[crop]['yield']:.2f} kg yield")

101

a4-efficient-gardening-solution.py http://localhost:59096/fcfd6dde-f668-492c-b771-d7d4a2eb16a8/

2 of 2 10/27/2023, 9:56 AM

A5 Minimizing Change in Pocket (CIP)

I don’t like accumulating extra change in my pocket (CIP). Except for quarters, I want as few coins as

possible. Design a calculator that keeps tracks of the CIP and when I have a bill to pay with cash, suggest

what change to give the clerk to minimize the number of coins left in my pocket. Assume the clerk

returns the minimal number of coins. Also report the new numbers of CIP after change is returned by

the clerk.

To avoid some issues, we will not deal with dimes or dollar bills. Also, assume that I will not give the

clerk more than 99 cents in change.

If the cents on the bill can be paid exactly by the CIP, do so using as many pennies and nickels as

possible.

If the cents on the bill cannot be paid exactly by the CIP, but pennies and/or nickels can be used to

decrease the final number of nickels and pennies in my pocket do so.

Example 1:

Input: Starting CIP: 8 pennies, 5 nickels, 4 quarters

The bill: $12.34

Output: Give 4 pennies, 1 nickel, 1 quarter

Final CIP: 4 pennies, 4 nickels, 3 quarters

Example 2:

Input: Starting CIP: 3 pennies, 2 nickels, 1 quarters

The bill: $20.18

Output: give 3 pennies

Final CIP: 0 pennies, 4 nickels, 4 quarters

Example 3:

Input:

Starting CIP: 3 pennies, 2 nickels, 1 quarters

The bill: $25.87

Output: give 2 pennies, 2 nickel

Final: 1 pennies, 0 nickels, 2 quarters

A5 Minimizing Change in Pocket (CIP)

I don’t like accumulating extra change in my pocket (CIP). Except for quarters, I want as few coins as

possible. Design a calculator that keeps tracks of the CIP and when I have a bill to pay with cash, suggest

what change to give the clerk to minimize the number of coins left in my pocket. Assume the clerk

returns the minimal number of coins. Also report the new numbers of CIP after change is returned by

the clerk.

To avoid some issues, we will not deal with dimes or dollar bills. Also, assume that I will not give the

clerk more than 99 cents in change.

If the cents on the bill can be paid exactly by the CIP, do so using as many pennies and nickels as

possible.

If the cents on the bill cannot be paid exactly by the CIP, but pennies and/or nickels can be used to

decrease the final number of nickels and pennies in my pocket do so.

Example 1:

Input: Starting CIP: 8 pennies, 5 nickels, 4 quarters

The bill: $12.34

Output: Give 4 pennies, 1 nickel, 1 quarter

Final CIP: 4 pennies, 4 nickels, 3 quarters

Example 2:

Input: Starting CIP: 3 pennies, 2 nickels, 1 quarters

The bill: $20.18

Output: give 3 pennies

Final CIP: 0 pennies, 4 nickels, 4 quarters

Example 3:

Input:

Starting CIP: 3 pennies, 2 nickels, 1 quarters

The bill: $25.87

Output: give 2 pennies, 2 nickel

Final: 1 pennies, 0 nickels, 2 quarters

6 Advanced — Hexagon

Problem Statement

y

(0, 0)

(1, 1)

(1,−1)

(2, 1)

(3, 0)

(2,−1)

x

In the hexagon shown to the right,
the two horizontal edges have length
1, and each of the other four edges
have length

√
2, which you should ap-

proximate as 1.414. We wish to divide
the perimeter of this hexagon into
n equal-length pieces, with the first
piece beginning at (0, 0) and going
clockwise around the hexagon. Write
a program that takes as input an inte-
ger n > 1 (the divisor) and a positive
integer k < n (the number of points to
display). It should produce as output
a list of the first k endpoints of these
pieces. For example, if n = 4, we di-
vide the perimeter of the hexagon into
4 equal-length pieces. Because the first segment must begin at (0, 0), its end-
point will be 1/4 of the distance around the hexagon, or (1.5, 1). The second
endpoint will then be (3, 0), etc.

Example 1:

Enter divisor: 4

Enter number to show: 2

(1.5, 1)

(3, -2.220446049250313E-16)

Example 2:

Enter divisor: 10

Enter number to show: 3

(0.5414427157001415, 0.5414427157001415)

(1.1172, 1)

(1.8827999999999998, 1)

Example 3:

Enter divisor: 3

Enter number to show: 2

(2.0975954738330977, 0.9024045261669021)

(2.0975954738330973, -0.9024045261669026)

Note: Your answers may not match the above exactly, but they should agree to
three decimal places; for example, because the second y-coordinate for Example
1 rounds to 0.000, the value produced should satisfy −0.0005 ≤ y < 0.0005.

....Hexagon\Advanced.Hexagon\Advanced.Hexagon\Program.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

// 6 Advanced - Hexagon

Console.Write("Enter divisor: ");
int n = Convert.ToInt32(Console.ReadLine());
Console.Write("Enter number to show: ");
int k = Convert.ToInt32(Console.ReadLine());
double diag = 1.414;
double len = (2 + 4 * diag) / n;
for (int i = 1; i <= k; i++)
{

double d = i * len;
double x, y;
if (d <= diag)
{

x = d / diag;
y = x;

}
else if (d <= 1 + diag)
{

d -= diag;
x = 1 + d;
y = 1;

}
else if (d <= 1 + 2 * diag)
{

d -= 1 + diag;
x = 2 + d / diag;
y = 1 - d / diag;

}
else if (d <= 1 + 3 * diag)
{

d -= 1 + 2 * diag;
x = 3 - d / diag;
y = -d / diag;

}
else if (d <= 2 + 3 * diag)
{

d -= 1 + 3 * diag;
x = 2 - d;
y = -1;

}
else
{

d -= 2 + 3 * diag;
x = 1 - d / diag;
y = d / diag - 1;

}
Console.WriteLine("(" + x + ", " + y + ")");

}

	Input
	Output
	Example

